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Spanning trees of a graph

A spanning tree B of a connected finite graph G with n vertices:

(1) B is connected
(2) B is acyclic
(3) B has n − 1 edges
k(G)= the number of spanning trees in G
Cayley’s Theorem: k(Kn) = nn−2
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Recognizing spanning trees via ∂1

G a connected finite graph with n vertices

For B ⊂ E(G) with |B| = n − 1 = rk∂1,

rk ∂B = rk ∂1 ⇔ B is a spanning tree in G.
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−1 −1 0 0 0

1 0 −1 −1 0
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Computing tree numbers

Matrix-Tree Theorem (Kirchhoff 1847)

Every cofactor of L(G) = k(G).

Pseudo-determinant of L(G) = n · k(G) (n = # vertices)

Temperley’s tree-number formula (Temperley 1964)

det(L(G) + J) = n2k(G) (J = all 1’s matrix)
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Example: L(G) and L(G) + J
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0 0 0 0 5


always singular non-singular for connected G
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Temperley’s Formula (1964)

det(L(G) + J) = n2k(G) (J = all 1’s matrix)

Proof: Multilinearity of determinant and rk J = 1

det(L(G) + J)

= det(C1 + 1,C2 + 1, . . . ,Cn + 1)

=
∑

det(X1,X2, . . . ,Xn) (Xi = Ci or 1)

=
∑

1≤i≤n

det(C1, . . .Ci−1,1,Ci+1, . . . ,Cn)

=
∑

1≤i≤n

n · k(G)

= n2 · k(G)
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Computing k(G) via ∂2
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Exact chain complex for G

G a connected graph with n vertices and m edges

C2 ' Zm−n+1 ∂2−−−−→ C1 ' Zm ∂1−−−−→ C0 ' Zn ∂0−−−−→ C−1 ' Z

L(G) = ∂1∂
t
1

∂0 = [1,1, . . . ,1] augmentation

L(G) + J = ∂1∂
t
1 + ∂t

0∂0

Im∂i+1 = Ker∂i
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Properties of ∆i

∆i = ∂i+1∂
t
i+1 + ∂t

i ∂i

Li = ∂i+1∂
t
i+1 Ji = ∂t

i ∂i

Multiset of positive eigenvalues of ∆i = P∆i = PLi ∪ PJi

Proof: Li and Ji are non-negative with LiJi = JiLi = 0.
If SpecLi = {λt} and SpecJi = {µt}, then Spec∆i = {λt + µt}.
λtµt = 0 for every t implies λt = 0 or µt = 0.

Combinatorial Hodge Theory (J. Friedman, 1996):

nullity ∆i = dim H̃i(C : Q)

Proof: Follows from rk ∆i = rk Li + rk Ji = rk ∂i+1 + rk ∂i .
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Definition of high-dimensional trees

Γ = (simplicial) complex with H̃i(Γ) = 0 for i < dim Γ.

{Ci , ∂i} = augmented chain complex of Γ with C−1 = Z
Assume ∂i 6= 0 for 0 ≤ i ≤ dim Γ.
Columns of ∂i are indexed by Γi (i-simplices of Γ)
Rows of ∂i are indexed by Γi−1

i-dimensional tree: for B ⊂ Γi

B is an i-dimensional tree if |B| = rk∂B = rk∂i .

i-dimensional tree number ki (Kalai 1983)

w(B) = |Im∂i/Im∂B| = |H̃i−1(ΓB)| (ΓB = B ∪ Γ(i−1))

ki(Γ) =
∑
B∈Bi

w(B)2
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High-dimensional tree numbers ki(Γ)

ki(Γ) =
∑
B∈Bi

w(B)2 .

k−1 := 1

k0 = |Γ0| (w(vertex) = 1)

k1 = k(Γ(1)) (w(spanning tree) = 1)

kd = 1 if Γ is acyclic. (d = dim Γ)

Example:
Γ = Σ

(2)
5 with vertices {1,2,3,4,5,6}.

B = {123,134,145,156,126,235,346,245,356,246} ∈ B2

H̃1(ΓB) = Z2 and w(B) = 2
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For ∂i , let ∂Ā,B be the submatrix of ∂i obtained by
deleting rows indexed by A and choosing columns indexed by B
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Non-singular submatrices of ∂i

Lemma

Let ri = rk ∂i for 0 ≤ i ≤ dim Γ.
The set of all ri×ri non-singular submatrices of ∂i is

B(∂i) := { ∂Ā,B |A ∈ Bi−1 and B ∈ Bi } ,

Moreover, |det ∂Ā,B| = w(A)w(B).

Main ideas of proof:
Using the long exact homology sequence of pair (ΓB, ΓA), show
(1) Ker ∂Ā,B = 0 iff A ∈ Bi−1 and B ∈ Bi .
(2) |H̃i−1(ΓB, ΓA)| = |H̃i−2(ΓA)| · |H̃i−1(ΓB)| = w(A)w(B) .
(3) |H̃i−1(ΓB, ΓA)| = |Zri/Im ∂Ā,B| = |det ∂Ā,B|.
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B(∂i) := { ∂Ā,B |A ∈ Bi−1 and B ∈ Bi } ,

Moreover, |det ∂Ā,B| = w(A)w(B).
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(1) Ker ∂Ā,B = 0 iff A ∈ Bi−1 and B ∈ Bi .
(2) |H̃i−1(ΓB, ΓA)| = |H̃i−2(ΓA)| · |H̃i−1(ΓB)| = w(A)w(B) .
(3) |H̃i−1(ΓB, ΓA)| = |Zri/Im ∂Ā,B| = |det ∂Ā,B|.



Product of all positive eigenvalues of L(G) = n · k(G):

π1 := pdet ∂1∂
t
1 = k0k1

Temperley’s formula det(L(G) + J) = n2k(G):

det ∆0 = k−1k2
0 k1
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Generalized matrix-tree theorem

Lemma (Generalized matrix-tree theorem)

Let Pi be the multiset of all positive eigenvalues of ∂i∂
t
i .

πi :=
∏
λ∈Pi

λ = ki−1ki .

Sketch Proof:
rk ∂i∂

t
i = rk ∂i = ri .

πi = the sum of all principal minors of ∂i∂
t
i of order ri .

=
∑

∂Ā,B∈B(∂i )

(det ∂Ā,B)2 by Cauchy-Binet theorem.

=
∑
A∈Bi−1
B∈Bi

w(A)2w(B)2 = ki−1ki . �
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Generalized Temperley’s formula

Proposition (Kim and K. 2014)

Let Γ be an acyclic complex of dimension d.

(1) det ∆−1 = k0,
(2) det ∆i = ki−1k2

i ki+1 for 0 ≤ i ≤ d − 1, and
(3) det ∆d = kd−1.

Proof. Note that H̃i(Γ) = 0⇒ ∆i is non-singular.
(1) ∆−1 is a multiplication by k0.
(2) Since ∂t

i ∂i and ∂i∂
t
i have the same non-zero eigenvalues,

det ∆i = det(∂t
i ∂i + ∂i+1∂

t
i+1) = πiπi+1 = ki−1k2

i ki+1 .

(3) Since Γ is acyclic, kd = 1. Hence,

det ∆d = det(∂t
d∂d ) = πd = kd−1kd = kd−1 . �
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Logarithmic tree numbers for acyclic complexes

Theorem (Kim and K. 2014)

Let Γ be an acyclic complex of dimension d. Let

ωi = log det ∆i and κi = log ki .

Define D(x) =
∑d

i=−1 ωix i+1 and K (x) =
∑d−1

i=0 κix i .

D(x) = (1 + x)2K (x) .

Proof: (1) log det ∆−1 = log k0.
(2) log det ∆i = log ki−1 + 2 log ki + log ki+1 for 0 ≤ i ≤ d − 1.
(3) log det ∆d = log kd−1. �
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Standard simplex (Kalai 1983) : ki = n(n−2
i )

Σ = the standard simplex on n vertices (dim Σ = n − 1).

∆i = nI and det ∆i = n( n
i+1) .

ωi = logn det ∆i =

(
n

i + 1

)

D(x) =
n−1∑

i=−1

ωix i+1 =
n−1∑

i=−1

(
n

i + 1

)
x i+1 = (1 + x)n .

K (x) =
n−2∑
i=0

κix i = (1 + x)n−2 ,

κi = logn ki =

(
n − 2

i

)
and ki = n(n−2

i )

.
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Hypercubes (Duval, Klivans, and Martin 2012)

The n-cube Qn = I × · · · × I (n-fold product)

Qn is acyclic and dim Qn = n.
det ∆0 = 2n∏n

j=1(2j)(n
j ) and det ∆i =

∏n
j=1(2j)(n

j )(j
i) for 1 ≤ i ≤ n .

k0 = 2n and ki =
n∏

j=2

(2j)(j−2
i−1)(n

j ) (1 ≤ i ≤ n − 1)
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Definition of matroid complex (Whitney 1935)

Definition. A matroid M is an ordered pair (E , I) where |E | is finite and
I ⊂ 2E satisfying:

∅ ∈ I.

If I ∈ I and I′ ⊂ I, then I′ ∈ I.
If I1, I2 ∈ I and |I1| < |I2|, then there is e ∈ I2 \ I1 such that
I1 ∪ e ∈ I.

Rank of M = r(M) =|B| for any maximal B ∈ I

Properties of I

I := IN(M) is a simplicial complex of dimension d = r(M)− 1.
IN(M) is shellable: H̃i(IN(M)) = 0 for i < d .
α(M) := TM(0,1) = rk H̃d (IN(M)) (A. Björner 1990)
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Examples

Cycle matroid M(G) = (E , I) of a connected finite graph G

E = E(G)

I ∈ I iff I ⊂ E is acyclic.
B= a spanning tree in G
r(M(G)) = n − 1 (n=# vertices of G)

Simplicial matroid M(∂) = (E , I) of a finite matrix ∂
E= the columns of ∂
I ∈ I iff I ⊂ E is linearly independent.
B= a basis for the column space of ∂
r(M(∂)) = rk ∂

An i-dim tree is a basis for M(∂i).
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Example: α(Kn) = α(M(Kn))

Theorem (Novik, Postnikov, and Sturmfels 2004)

α(Kn) =

b n−2
2 c∑

k=0

(
n − 2

2k + 1

)
(2k + 1)!

2k · k !
(n − 1)n−(2k+3) (n ≥ 2).

n 1 2 3 4 5 6 7 8
α(Kn+1) 0 1 6 51 560 7575 122052 2285353

lim
n→∞

α(Kn)

nn−2 = e−1/2

∑
n≥0

α(Kn+1)
xn

n!
= eT (x) , where T (x) =

∑
m≥2

(m − 1)mm−2 xm

m!
.
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∆i on IN(M) (K., Reiner, and Stanton 2000)

L(M) lattice of flats in M

Λ = the set of all eigenvalues of ⊕d
i=−1∆i on IN(M)

Λ = { |E \ V | : V ∈ L(M) and α(V ) 6= 0}

In particular, all eigenvalues are non-negative integers.

mλ,i = multiplicity of λ in det ∆i .

mλ,i =
∑

V : |E\V |=λ

∑
W : r(W )=i+1

α(V )µ(W/V )

µ(W/V ) := |µ(V ,W )| Möbius function on L(M)× L(M)
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Example: augmented matroid complex

 
Graph-1 

a d

b c

eG : 

1

2

3 

4

1 

1 

3G12 :
1

1 3 4 
2 2 G24 : 

Γ = acyclic augmentation of IN(M) for M = M(G)

dim Γ = 3

|∆−1| = 51, |∆0| = 55, |∆1| = 2258, |∆2| = 2455, |∆3| = 225

D(x) = (1 + x)2(log 51 + log 53 x + log 225 x2)

k0 = 51, k1 = 53, and k2 = 225 (k−1 = k3 = 1)

Question: Find a formula for the multiplicity of λ (= 2,5) in ki .
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Multiplicity of λ in ki for acyclic complex Γ

Λ = the set of eigenvalues of ⊕d
i=−1∆i on Γ

mλ,i = multiplicity of λ in det ∆i

det ∆i =
∏
λ∈Λ

λmλ,i

ki =
∏
λ∈Λ

λaλ,i

where aλ,i = mλ,i−1 − 2mλ,i−2 + · · · ± (i + 1)mλ,−1

( obtained from K (x) = (1 + x)−2D(x) )
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Multiplicity of λ in ki for IN(M)

d = dim IN(M) = r(M)− 1

V ,W ∈ L(M)

aλ,d =
d−1∑
i=−1

(−1)d−1−i(d − i)mλ,i

mλ,i =
∑

V : |E\V |=λ

∑
W : r(W )=i+1

α(V )µ(W/V )

aλ,d =
∑

V : |E\V |=λ

α(V ) (−1)r(M/V )
∑

W∈[V ,1̂]

µ(0̂,W/V ) r(W/V )

Question: What is (−1)r(M)
∑

W∈L(M)

µ(0̂,W ) r(W ) ?
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β-invariant of a matroid (Crapo 1967)

Given a matroid M = (E , I) with the rank function r ,

β(M) = (−1)r(M)
∑
X⊂E

(−1)|X |r(X )

= (−1)r(M)
∑

W∈L(M)

µ(0̂,W ) r(W )

β(M) =
∂TM

∂x
(0,0) = (−1)r(M)χ̃(B̄C(M))

β(M) = β(M−e) + β(M/e) (e 6= isthmus or loop)
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Tree numbers of matroid complex

aλ,d =
∑

V : |E\V |=λ

α(V ) (−1)r(M/V )
∑

W∈[V ,1̂]

µ(0̂,W/V ) r(W/V )

=
∑

V : |E\V |=λ

α(V )β(M/V )

Theorem (High-dimensional tree numbers of a matroid, 2015)
M = a matroid and L(M) = lattice of flats. d = dim IN(M) = r(M)− 1.
Λ = the set of eigenvalues of ⊕d

i=−1∆i on IN(M). For λ ∈ Λ,

α ◦λ β :=
∑

V∈L(M):|E\V |=λ

α(V )β(M/V )

kd =
∏
λ∈Λ

λα◦λβ
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Examples: Un,r and M(Wn+1)

M = Un,r =
⋃

0≤i≤r

(
[n]

i

)
(E = [n])

L(M) = {∅,M}; Λ = {n,0}

α ◦n β = α(∅)β(M) =

(
n − 2
r − 1

)
kr−1 = n(n−2

r−1)

M = M(Wn+1)

kn = (2n)nn
n−2∏
k=1

(2n − (2k + 1))n·2k−1
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THANK YOU!



Corollary
Let Γ be an acyclic complex of dimension d. Then

d∑
q=0

(−1)q+1q log det ∆q = 0 .


