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@ A spanning tree B of a connected finite graph G with n vertices:
(1) Bis connected
(2) Bis acyclic
(3) Bhas n— 1 edges

@ k(G)=the number of spanning trees in G

@ Cayley’s Theorem: k(Kp) = n"—2
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Incidence matrix J; and Graph Laplacian L(G)

4
e2 €5
G: J< e4 >3
el €3
2
-1 -1 0 O
1 -1 -1 0
%=1 0o 0o 1 o0 -
0o 1 0o 1 1
2 —1 0
-1 3 -1
L(G) := 040! = 0 -1 o
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Recognizing spanning trees via 0,

G aconnected finite graph with n vertices
For B C E(G) with |B| = n—1 =rkd,,

rkog =rkd; << Bisaspanning treein G.

4
__: (1) (1) 0 e2 e5
2= o9 o L | oe J< e4 >- 3
o 1 0 1 el &3
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@ Matrix-Tree Theorem (Kirchhoff 1847)
Every cofactor of L(G) = k(G).

Pseudo-determinant of L(G) = n- k(G) (n = # vertices)

@ Temperley’s tree-number formula (Temperley 1964)

det(L(G) + J) = n?k(G) (J = all 1’s matrix)
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Example: L(G) and L(G) + J

4 -1 -1 -1 -1
1 4 1 -1 -1
LG)=|-1 -1 4 —1 —1
1 -1 -1 4
4 -1 -1 -1 4

always singular

5000 0
05000
LG)+J=]0 05 0 0
00050
00005

non-singular for connected G
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Temperley’s Formula (1964)

det(L(G) + J) = n?k(G) (J = all 1’s matrix)

Proof: Multilinearity of determinant and rkJ = 1

det(L(G) + J) =det(Cy +1,Co+1,...,Ch+ 1)
= det(X1, X2,.... Xn)  (Xi=Cjor1)
= Y det(Cy,...Ci—1.1,Cis1,...,Cn)

1<i<n

= > n-k(G)

1<i<n

— 2 k(G)
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Computing k(G) via 0>

4
e2 e5
G 1 < e4 > 3
el e3
2

columns = a basis for cycle group H;(G)

o, = <_? _;) cycle-intersection matrix
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Combinatorial Laplacian
C = {C;, 0;} afinite chain complex over Z with C_1 = Z
8,' : C,' — C,‘_1 8lt : C,'_1 — C,'

8,-+18,-’+1 :Ci— G 8,?8/' :Ci— G

@ Combinatorial Laplacian A; : C; — C; (Eckmann 1945)
Aj = 041081 + 010

@ Example: A for a graph G
A= 808’ = (n)
Do = 010! + 050y = L(G) + J
A = 8285 + 8€81
Dy = 90;
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Properties of A;

A= 8,-+18f+1 + 8,?8,-
Li=0410L,  Ji= 010,

@ Multiset of positive eigenvalues of Aj= Pa, = P, UP,
Proof: L; and J; are non-negative with L;J; = J;L; = 0.

If Spec,, = {\¢} and Specy, = {1}, then Speca, = {\¢ + it}
Apt = 0 for every timplies A\ = 0 or u; = 0.

@ Combinatorial Hodge Theory (J. Friedman, 1996):
nullity A; = dim H;(C : Q)

Proof: Follows from rk A; = rk L; +rkJ; =tk 0j 11 + rk 0; .
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High-dimensional tree numbers k;(I)

k_1:=1

ko = |lo| (w(vertex) =1)

ki = k(F™M)  (w(spanning tree) = 1)
kg = 1if I'is acyclic. (d =dimT)

Example:
r = v with vertices {1,2,3,4,5,6}.
B = {123,134,145,156, 126,235, 346, 245, 356, 246} € B,

H1(r3) =Z> and W(B) =2
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For 0;, let 05 g be the submatrix of 9; obtained by
deleting rows indexed by A and choosing columns indexed by B
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Non-singular submatrices of 0;

Lemma

Letri=rko; for0 <j<dimT.
The set of all r; x r; non-singular submatrices of 9; is

8(6,-) = {8;\’3 ’ Ac Bi_1 and B € B,’},

Moreover, | det 0z g| = w(A)w(B).

Main ideas of proof:

Using the long exact homology sequence of pair (I'g, I'4), show
(1) Ker 6;\73 =0iffAe Bi_yand Be B; .

(@) [Hi—1(T's,Ta)l = [Hi—2(Ta)| - [Hi—1(T8)| = w(A)w(B) .

(3) |Hi—1(Tg, Ta)| = |Z"/Im 05 g| = | det Iy gl.
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@ Product of all positive eigenvalues of L(G) = n- k(G):
T = pdet8161’ = Kokq
@ Temperley’s formula det(L(G) + J) = n?k(G):

det Ag = k_1k3k
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Generalized matrix-tree theorem

Lemma (Generalized matrix-tree theorem)

Let P; be the multiset of all positive eigenvalues of 9;0!.

f o= H A=Ki_1Kk;.
A\EP;

Sketch Proof:
rka,ﬁf =rko;=r.
m; = the sum of all principal minors of 9;0! of order r;.
= ) (detdzp)® by Cauchy-Binet theorem.
9a,8€B(9)
= > wAPw(B? = k_k. O

AeB;_4
BeB;
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Generalized Temperley’s formula

Proposition (Kim and K. 2014)

LetT be an acyclic complex of dimension d.
(1) detA_q1 = ko,

(2) detA; = ki_1k?ki 4 for0 <i<d—1, and
(3) detAy = kg_1.

Proof. Note that H;(I"') = 0 = A; is non-singular.
(1) A_4 is a multiplication by k.
(2) Since 9!0; and 9;0! have the same non-zero eigenvalues,

detA; = det(&f@,- + 0/+13,-t+1) = MiTjp1 = i—1ki2ki+1 .



Generalized Temperley’s formula

Proposition (Kim and K. 2014)

LetT be an acyclic complex of dimension d.
(1) detA_q1 = ko,

(2) detA; = ki_1k?ki 4 for0 <i<d—1, and
(3) detAy = kg_1.

Proof. Note that H;(I"') = 0 = A; is non-singular.

(1) A_4 is a multiplication by kg.

(2) Since 9!0; and 9;0! have the same non-zero eigenvalues,
det A; = det(9!0; + 0;410% 1) = Timit1 = Ki_1kPkis1 -

(3) Since T is acyclic, kg = 1. Hence,

det Ay = det(0404) = ng = kg_1kg = kg_1. O
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LetT be an acyclic complex of dimension d. Let
wj = logdetA; and k;=logk;.
Define D(x) = Y9 wix™1 and K(x) =%, kix!

D(x) = (1 + x)?K(x).
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Logarithmic tree numbers for acyclic complexes

LetT be an acyclic complex of dimension d. Let
wj = logdetA; and k;=logk;.
Define D(x) = Y9 wix™1 and K(x) =%, kix!
D(x) = (1 + x)?K(x).

Proof: (1) logdet A_1 = log kp.

(2) logdetA; = log ki_1 + 2log k;j + log ki1 for0 < i < d—1.
(3) logdet Ay =logkg_1. O
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Standard simplex (Kalai 1983) : k; = n("i")
¥ = the standard simplex on n vertices (dimx = n—1).

A;j=nl and detA;= (i) |
n
wj =log,detA; = <i+ 1>

n—1

wam Z < £1>Xi+1:(1_|_x)n'

i=—1

K(x) =) rmix' =(1+x)"2,



Standard simplex (Kalai 1983) : k; = n("i")
¥ = the standard simplex on n vertices (dimx = n—1).

A;j=nl and detA;= (i) |

wj =log,detA; = <i:1>

n—1
X = < n >Xi+1: 14 x)".
0= 8w 8 (2

n—2
K(x) =3 mix = (14 %)%,
i=0

Rj = Iogn ki = <n 7 2) and ki = n(n72)
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Hypercubes (Duval, Klivans, and Martin 2012)

The n-cube Q, = I x - -- x I (n-fold product)

Qp is acyclic and dim Q, = n.
n n\(Jj
; N

det g = 2717, (2)7) and deta; = T174(2) DD for 1 < i< n .

ko=2" and k;= ﬁ(Zj)({:‘z)(?) (1<i<n-1)
j=2
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Definition of matroid complex (Whitney 1935)

Definition. A matroid M is an ordered pair (E,Z) where |E| is finite and
T c 2F satisfying:

@ Nel.

elf/leZand/l C I, thenl €.

@ If Iy, h e Zand || < |k|, thenthereis e € I\ /; such that
hueel.

Rank of M = r(M) =|B| for any maximal B € 7

Properties of Z
@ 7 := IN(M) is a simplicial complex of dimension d = r(M) — 1.
@ IN(M) is shellable: H;(IN(M)) =0 for i < d.
@ a(M) := Ty(0,1) = rk Hy(IN(M)) (A. Bjérner 1990)



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I € Ziff I C Eis acyclic.



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I € Ziff I C Eis acyclic.
B= a spanning tree in G



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)

@ Simplicial matroid M(0) = (E,Z) of a finite matrix 0



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)

@ Simplicial matroid M(0) = (E,Z) of a finite matrix 0
E=the columns of 0



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)

@ Simplicial matroid M(0) = (E,Z) of a finite matrix 0
E= the columns of 0
I € Ziff I C E is linearly independent.



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)

@ Simplicial matroid M(0) = (E,Z) of a finite matrix 0
E=the columns of 0
I € Tiff I C E is linearly independent.
B= a basis for the column space of 0



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)

@ Simplicial matroid M(0) = (E,Z) of a finite matrix 0
E=the columns of 0
I € Tiff I C E is linearly independent.
B= a basis for the column space of 0
r(M(0)) =rko



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)

@ Simplicial matroid M(0) = (E,Z) of a finite matrix 0
E=the columns of 0
I € Tiff I C E is linearly independent.
B= a basis for the column space of 0
r(M(0)) =rko



Examples

@ Cycle matroid M(G) = (E,Z) of a connected finite graph G
E = E(G)
I e Ziff I C Eis acyclic.
B= a spanning tree in G
r(M(G)) =n—1 (n=# vertices of G)

@ Simplicial matroid M(0) = (E,Z) of a finite matrix 0
E=the columns of 0
I € Tiff I C E is linearly independent.
B= a basis for the column space of 0
r(M(0)) =rko

@ An i-dim tree is a basis for M(9;).
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Example: o(K,) = a(M(K,))

Theorem (Novik, Postnikov, and Sturmfels 2004)

1%52]

k=0 ’

n_ |1]2]3[4]5 | 6 | 7 | 8
a(Knet) 0|16 |51 560 | 7575 | 122052 | 2285353
lim a(Kn) :ef‘|/2



Example: o(K,) = a(M(K,))

Theorem (Novik, Postnikov, and Sturmfels 2004)

n_||1]2|3[4|5 |6 | 7 | 8
a(Kn1) | 0| 1651|560 | 7575 | 122052 | 2285353
jim K0 _ 12

n—oo NN n—2

x" T(x) mm- 2 X
> a(Knp) = =e"™, where T(x)=> (m—1 —_E
n>0 ' m>2 '
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A;jon IN(M) (K., Reiner, and Stanton 2000)

L(M) lattice of flats in M
A = the set of all eigenvalues of ®%__,A; on IN(M)

A={|E\ V| : Ve L(M)and a(V) # 0}

In particular, all eigenvalues are non-negative integers.

my ; = multiplicity of X in det A;.

myi= > Yo aV)uw/v)

V| E\V|=X W:r(W)=i+1

w(W/V) = |u(V, W)| Mébius function on L(M) x L(M)
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Example: augmented matroid complex

a d
G: ‘< e >'

b C
[ = acyclic augmentation of IN(M) for M = M(G)
dimln =3
|A—1| = 517 |A0| = 557 |A1| = 22587 ‘A2’ = 24557 |A3| =2%5
D(x) = (1 + x)?(log5" + log 5° x + log 225 x?)
ko=5" kj =53 and kp =225 (k_y =kz =1)

Question: Find a formula for the multiplicity of A (= 2,5) in k;.
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Multiplicity of X in k; for acyclic complex I'

A = the set of eigenvalues of @7 ,;A;onT
m,; = multiplicity of X in det A;

detA; =[] A™
AEN
ki= ] r®
AEA

where ay;=my;_1—2myjo+---£(I+1)my_4

(obtained from  K(x) = (1 +x)"2D(x) )
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Multiplicity of \ in k; for IN(M)

d = dim IN(M) = r(M) — 1
V. W e L(M)

d—1
ang= Y (=) (d - iymy,

i=—1
mi= S S a(v)uw/v)

Vi E\V|=X W: r(W)=i+1

aa= ., aWV)(1)MYN T (0, W/ V) (W) V)

V:|E\V|=X welv,i]

Question: Whatis  (—1)" ™ %" (0, W) r(W)
WelL(M)
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p-invariant of a matroid (Crapo 1967)

Given a matroid M = (E, Z) with the rank function r,

BM) = (—1) ™) 3™ (~1)XIx(
XCE
= (=1)™ 3" wd,wyr(w)
WeL(M)
OTwm M) (B
B(M) = —-=(0,0) = (=1)""'X(BC(M))

ox

B(M) =pB(M—e)+ 5(M/e) (e # isthmus or loop)
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Tree numbers of matroid complex

aag= ., aV)(1)WYN T (0, W/ V) (W) V)

Vi [E\V|=A welv,i]

= Z a(V)B(M/V)

V:|E\V|=X

Theorem (High-dimensional tree numbers of a matroid, 2015)

M = a matroid and L(M) = lattice of flats. d = dim IN(M) = r(M) — 1.
A = the set of eigenvalues of ¢__,A; on IN(M). For X € A,

aoy B = > a(V)B(M/ V)

VEL(MY:|E\V|=A

ka = [ A"
AEA
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Examples: U, and M(W,_+)

om=t,= U () €-m

o<i<r

L(M) = {0,M}; A= {n,0}

oo = @) = (1)

r—1
kr—1 = n(rr,:12)
o M=MW,.+)

n—-2
kn = (2n)"'n T (2n — (2K + 1))"?"
k=1
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Main Theme

@ Combinatorial Laplacians acting on cell complexes
Combinatorics: order complexes for posets
Topological data analysis: Vietoris-Rips complex for point cloud
@ Main subjects of the talk

Spectra of combinatorial Laplacians
High-dimensional tree numbers for acyclic complexes



THANK YOU!



LetT be an acyclic complex of dimension d. Then

d
> (~1)7""glogdet Ay =0.
q=0




